
IJSRSET173431 | Received : 07 July 2017 | Accepted : 17 July 2017 | July-August-2017 [(3)5: 148-151]

© 2017 IJSRSET | Volume 3 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

148

Code Clone Detection based on Logical Similarity : A Review
Ashish N. Runwal*, Akash D. Waghmare

Department of Computer Engineering, SSBT COET, Jalgaon, Maharashtra, India

ABSTRACT

Code Clones are the entities in software ecosystems which can be unavoidable. Demand of software based clone

detection has risen in industries day by day. Due to code duplication means the copy and paste activities, such

pattern is recurrent thereby developers can reduce effort and time of rewriting similar code fragment by editing

prewritten code. Code duplication may affect on quality, consistency, maintainability and comprehensibility. Here

the trial is variety of syntax, compiler dependent language, and various coding patterns to resolve a single problem.

There is lots of software tools, code clone detection algorithms exist, but they have some restrictions to detect

perfect cloning. Earlier research and tools developed till now can find only Type-I, Type-II and some part of Type-

III clones. Some tools are very slow and time consuming for comparing codes and with low in precision. Type-IV

clone detection represents a challenge in current scenario. Type-IV is the Code with similar functionality that may

be syntactically different but logically similar referred as semantic clones. This paper presents an algorithm for

clone detection based on comparing parts of abstract syntax tree of programs and finding semantic coding styles.

Keywords: Code Clone, Type-I, Type-II, Type-III, Type-IV, Code duplication.

I. INTRODUCTION

The software maintenance is a complex task. When the

code is large difficulty mainly occurs. The software code

can have presence of large quantity of similar code

fragments which increase the code length and

maintenance cost. It is necessary to correct the error in

corresponding cloned code fragments if any fault is

occurs in some code. The detection and correction in

huge software is difficult and complex task. Code clones

are the similar code content that is knowingly or

accidently occurs in code development process. Latest

work states that clones are dangerous as formerly

assumed and might upturn throughput. Clones do harm

and provide undesired impact on software

maintainability, also cloned code may be less error prone

than non-cloned code. Code clones are section of source

code that is doubled in numerous localities due to replica

or even mirroring activity, or content copy paste by

program writer. Clones are similar in syntax and logical

way that have similar outcomes. Basically, clones have

the functional similarity. Clone upsurges maintenance

budget of software system, major standard

methodologies to categorize the code clone in account

that brings four benchmarks.

A. Categories of code clones:

1) Type-I Exact clones: Same code blocks except for

differences in whitespace, design, and developer

comments.

2) Type-II Renamed clones: Code with similar

functionality and also syntactically identical fragment.

Modification is made in replicated code, such as

renaming identifiers.

3) Type-III Gapped clones: Code with Type-I and Type-

II with additional insertion or deletion of statements are

referenced as gapped clones.

4) Type-IV Semantic or logical clones: Code that may

be syntactically different but logically similar referred

as semantic clones.

Code clone detection is essential in order to utilize

storage resources, maintain software and improve code

productivity. Programming size increases for no reason.

Code replication increases the overhead software

maintenance, since bug introduction in the source may

be replicated accidently or unknowingly. There are

various code clone detection techniques for detecting

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 149

such replicated codes, now introducing various

detection techniques:

 Text-based

 Token-based

 AST-based (Abstract Syntax Tree)

 Dependency-graph-based

 Metrics-based

 Hybrid-based

A clone detector must compare all the possible code

with each other. But such a process is very expensive

and due to this it is supported by various metrics

reducing unnecessary comparisons. In this paper we

introduce our deal with syntactically different but

logically similar code clones. Since us works with

abstract syntax trees, it is believed to be a contribution

to AST-based detection techniques. In the paper we

describe our survey on the clone detection techniques

based on AST.

I. RELATED WORK

The Code clone detection is now-a-days very popular

domain for study. It is used in the number of types.

There are 3 main type involved in the Code clone

detection as Type I, Type II and Type III.

Keivanloo et al., in, [1] in this paper k-means clustering

algorithm to replace the threshold-based cutoff step in

the clone detection process is proposed. Use of k-means

to determine the number of expected clusters as part of

the configuration. The experimental result shows that

use of k-means algorithm improves the performance

significantly by 12%.

Toshihiro Kamiya, in, [2] in this paper a code-clone

detection and its analysis method, based on an

execution-semantic where two code fragments are

defined to be identical to each other when their

execution sequences include the same method

invocations in the same order, in any possible

executions of the target program and arbitrary

granularity model of code fragments is presented. These

experiments show that code-clone detection and its

analysis method suitable for programming languages.

The ideas of clone-detection method are:

 Detection of similar sequences in an execution trace

(dynamic information) of a target program and

mapping of such similar sequences onto its source

code (static artifact).

 Application of a frequent item-set algorithm to the

arbitrary-granularity model (nodes at any depths in

a sub tree of a call tree) to detect a type-3 code

clone.

In an execution trace, type information is extracted from

values stored in variables A call relation has been

determined as a call tree itself. Also, control statements

have been expanded as the results of dispatching of

procedures.

Joshi et al., in, [3] in this paper multi-model learning

technique to detect various types of code clone is

proposed. Experiment shows that efforts of comparing

the code line by line between two files are eliminated.

CCfinder tool is token based approach, detects sequence

of source code and output. Tokens are removed, added

or changed based on transformation rules that targets at

regulation of identifiers and identification of structures.

Then each identifier related to types, variables &

constraints is changed with special token. CCfinder has

no Graphical User Interface and the character based

output is generated. The reorganization is confusing on

only character based output information.

In token based clone discovery, all the source code is

transformed into a development of symbol and direct

recommendations. It is then inspected to classify

replication subsequences.

Chodarev et al., in, [4] In this paper pattern recognition

algorithm for clone detection based on comparing parts

of abstract syntax tree of programs and finding

repeating patterns is proposed. Implementation of the

clone detection tool for Haskell was divided into two

main parts:

1) Haskell parser producing abstract syntax trees of the

source code,

2) Pattern analyzer recognizing the AST to find possible

clones.

Both parts are implemented as separate programs that

communicate using XML format as shown in fig. 1.

Results of proposed algorithm found promising even on

large code bases.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 150

Figure 1. Architecture of Haskell clone detection tool

Nappa et al., in, [5] in this paper the first systematic

study of patch deployment in client-side vulnerabilities

is presented. These experiment shows that the median

fraction of vulnerable hosts patched when exploits are

released is at most 14%.

Patil et al., in, [6] in this paper the code reduction and

decentralized system with multiple smart nodes is

implemented. The code reduction method designates

clusters for faster detection of clones. These experiment

evaluates here as code complexity, weighted graphs

enhances precision in detection.

Siim Karus and Karl Kilgi, in, [7] in this paper a set of

wavelets-based code clone detection approach for

detecting code clones is proposed. The experimental

evaluation shows that approach is able to effectively

identify more clones than alternative algorithms.

II. PROPOSED SOLUTION

We have proposed a clone detection technique based on

AST. To find clones in the AST, we need principal to

compare each sub tree to each other sub tree in the AST.

Because this approach would not scale, it is necessary to

compare all sub trees within the same partition in a

second step. This comparison is a tree match, where we

use an inexact match based on a similarity metric. The

similarity metric measures the fraction of common

nodes of two trees. Cloned sub trees that are themselves

part of a complete cloned sub tree are combined to

larger clones. Special care is taken of chained nodes that

represent sequences in order to find cloned

subsequences.

A. Abstract Syntax Tree:

The AST-based technique yields syntactic clones. And

the AST-based clone detection offers many additional

advantages as already mentioned in the introduction

also shown in fig. 2. Partitioning the sub trees in the

first stage helps a lot; the comparison of sub trees in the

same partition is still pair wise and hence requires

quadratic time. Moreover, the AST nodes are visited

many times both in the comparison within a partition

and across partitions because the same node could occur

in a sub tree subsumed by a larger clone contained in a

different partition.

We assume however that the clone detection is part of a

larger system and the AST is already available. It would

be valuable to have an AST-based technique.

Figure 2. Examples AST

The codes which are syntactically different, but

semantically similar remain hidden from code clone

detection techniques. Abstract syntax tree can be used to

overcome this challenge. Abstract syntax tree is a tree

representation of the abstract syntactic structure of

source code written in a programming language. By

using abstract syntax tree, logically similar code clones

can be detected.

III. PROBLEM STATEMENT

Code clone detection is a process of finding

semantically and syntactically similar code clones. Code

clones are code fragment similar to one another in the

form of semantics and syntax. Code clones are created

through mirroring activity or content copy paste.

Finding semantically similar code clones is a

challenging task in code clone detection. Due to this, the

codes which are syntactically different, but semantically

similar remain hidden from code clone detection

techniques. Abstract syntax tree can be used to

overcome this challenge. Abstract syntax tree is a tree

representation of the abstract syntactic structure of

source code written in a programming language. By

using abstract syntax tree, logically similar code clones

can be detected.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 151

IV. CONCLUSION

From the discussion it is clear that code cloning

detection is a technique of finding the semantically and

syntactically similar clones. The fragment which is

syntactically different, but semantically similar remains

hidden from code clone detection techniques. Abstract

syntax tree can be used to overcome this challenge.

Usage of abstract syntax tree will give better and

superior results than the traditional approach.

V. REFERENCES

[1] Iman Keivanloo, Feng Zhang, Ying Zou, 2015,

“Threshold-Free Code Clone Detection for a Large

Scale Heterogeneous Java Repository”, Saner IEEE.

[2] Toshihiro Kamiya, 2015, “An Execution-Semantic

and Content and Context Based Code Clone

Detection and Analysis”, IWSC IEEE.

[3] Ritesh V. Patil, Shashank D. Joshi, Sachin V.

Shinde, V. Khanna, “An Effective Approach Using

Dissimilarity Measures To Estimate Software Code

Clone”,

[4] Sergej Chodarev, Emilia Pietrikova, Jan Kollar,

2015, “Haskell Clone Detection using Pattern

Comparing Algorithm”, International Conference

on Engineering of Modern Electric Systems, IEEE.

[5] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan

Caballero, Tudor Dumitras, 2015, “The Attack of

the Clones: A Study of the Impact of Shared Code

on Vulnerability Patching”, IEEE Symposium on

Security and Privacy.

[6] Ritesh V. Patil, Shashank D. Joshi, Sachin V.

Shinde, Digvijay A. Ajagekar, Shubham D. Banker,

2015, “Code Clone Detection Using Decentralised

Architecture and Code Reduction”, International

Conference on Pervasive Computing, IEEE.

[7] Siim Karus, Karl Kilgi, 2015, “Code Clone

Detection using Wavelets”, IWSC IEEE.

[8] Rainer Koschke, Raimar Falke, Pierre Frenzel,

2006, “Clone Detection Using Abstract Syntax

Suffix Trees”, 13th Working Conference on

Reverse Engineering, IEEE.

[9] Tahira Khatoon, Priyansha Singh, Shikha Shukla,

Dec. 2012, “Abstract Syntax Tree Based Clone

Detection for Java Projects”, IOSR Journal of

Engineering, Vol. 2, Issue 12.

